Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Regular & Supplementary Examinations May-2022 PRINCIPLES OF ELECTRICAL CIRCUITS

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

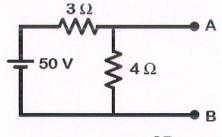
UNIT-I

1 a State and explain Ohm's law with limitations.

- L2 6M
- **b** Three resistances of values 20Ω , 30Ω and 50Ω are connected in series across 20 V DC supply. Calculate,
- L3 6M

- i) Equivalent resistance of the circuit.
- ii) Total current from the supply.
- iii) Voltage drop across each resistor.
- iv) Power dissipated in each resistor.

OR


2 a Explain nodal analysis by taking one example.

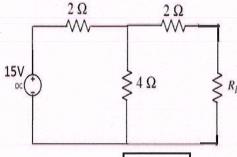
- L2 6M
- **b** Explain in detail about star to delta transformation of a resistive network.
- L3 6M

UNIT-II

3 a State & explain Super position theorem.

- L1 6M
- b Find Norton's equivalent circuit across AB for the circuit shown.
- L3 6M

OR


4 a State and prove maximum power transfer theorem.

- L3
- **b** Find load current by using Thevenin's theorem for the following circuit
- L3

6M

6M

Where RL = 3Ω .

UNIT-III

- 5 a Derive the Transient Response of series RL-circuit with D.C excitation
- **L2** 6M
- **b** A series RL circuit with $R=30\Omega$ and L= 15H has a constant voltage V=60v applied at t=0.Determine the current "I", voltage across resistor and voltage
- L4 6M

across inductor.

O	.P.	Code: 20EE0253	R20	
OR				
6	a	The circuit consists of Resistance=20 Ohm, Inductance = 0.05H, Capacitance	L2	6M
		= 20uF in Series with a 100V Constant at t=0. Find the Current Transient.		
	b	Derive the Laplace Transform of Series RC Circuit.	L2	6M
		UNIT-IV		
7	a	Define apparent power, active power and reactive power.	L2	6M
	b	Derive an expression for average values of sine wave form.	L2	6M
		OR		
8	a	A resistor of 50Ω and inductance of $100mH$ are connected in series across	L2	6M
		200V, 50Hz supply. Determine the following (i) Impedance (ii) current		
		flowing through the circuit (iii) power factor		
	b	Explain the phasor relation for R, L & C elements	L4	6M
		UNIT-V		
9	a	Define Two port network and explain about Impedance parameters.	L2	6M
	b	Explain about short-circuit parameters.	L2	6M
OR				
10	a	Define filters and explain classifications of filters.	L2	6M
	b	Design a Band-elimination filter having design impedance of 600Ω and	L2	6M
		cut-off frequencies $f = 2kHz$ and $f = 6kHz$.		

*** END ***